1.

Let P(z,y) be the assertion f(zf(y) + f(y)) = f(z)? +y
P(0,z) = f(f(z)) ==+ f(0)* and so f(z) is bijective
and so Ja € R such that f(a) =

Then Pla,x) = [(f(x) = o and [ (x) =

P(f(z),y) = f(f(2)f(f(z)) + f(y) = f(f(2))* +y,
and so £(z () + 1) = 2% +y

and so, by comparing with P(z,y) we get f(x)? = z°.
So, Yz € R, either f(z) =z or f(z) = —uz.

Suppose now Ja such f(a) = —a and 3b such f(b) = b and ab # 0.
P(a,b) = f(—a®> +b)=a®*+b
and so either —a? +b=a? +b or a?> —b = a? + b = either a = 0 or b =, 0 a contradiction.

So, either f(z) =2z Vz,or f(z)=—-x Yz
It is easy to check that both these solution fit the requirements.
Hence, the two solutions are:

flz)y=z YreR
flz)=—x Yzeck

2.
weseta+b=x,b+c=y,a+ c= zandget
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If A places —1 in front of the term x and at its second move he places an integer
in the last free place, which is the opposite of what B placed, then the equation has
the form x* — ax?> — x + a = 0. This equation has the roots —1, 1, a, which are

integers.

4.

Let 2, = a,, + ib, where i2 = —1

From the definition,
2p = A0Qn—1 — bobn_1 + i(aobn_1 + bpan_1)
2p = ag(Ap_1 +ibp_1) — bobn_1 + ibga,_1
2n = ag(an_1 + ibp_1) + i2bobp_1 + iboan_1
Zn = 0o(@n—1 + ibn_1) +ibo(an_1 + ibp_1)
2p = (ag + bo)(an_1 + b, _1)

Jo 2 = Z202Zn-1

Therefore {zn}nENu{O} is a GP with first term and common ratio zg. Also, note that |zp| < 1.
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Note:

Co-efficient of 2" in (2) = (=1)"T! (1 + % + % + ... 712)

For evaluating the n-th derivative of a polynomial (or more appropriately, power series here) at x=0, only infor-
mation of the co-efficient of 2™ is required as all the lower powers will disappear due to repeated differentiation
and higher powers will vanish on putting x=0. (This is why the transformation in (1) was done.)

Formally:

Iff(x):ao+a.1;z:—|—ag;1:2—|—...

Y e
n=0
Then,
dn
ol @) =nlan 9)
=0
Thus, from (3) and (4):
1 1 1
=(-D)" 1+ +z+...= 10
o) = (-0 (14 5+ g+t ) (10)
Now, note that for k € N, the following holds:
1 1 1 1 1
g(Qk)—l—g(Qk—l-l)——(14—54—...%) + (1+§+...2k+1) =53 (11)
Finally,
4m—+1
Z g(k)=g(2m) +g(2m + 1)+ g(2m + 2) + g(2m + 3) + ... g(4m) + g(4m + 1)
k=2m
1 1 1
= Fr 6
o+l 2m+3 dmtl (Erom (6))
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Note that 1 is continuous and bounded in [0, 1]. Therefore, it is Riemann integrable. By partitioning the

interval and choosing the tags suitably, the limit of the sum can be converted into an integral.
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7.
‘We have that

a2+ b2 =c?
c—b=1

Claim 1. a 1s odd.

Proof. From (2), we have that b and ¢ are of different parities. (That is, one is odd and one is even.)
From (1), we have that a2 = ¢ —b®> = (¢ + b)(c—b) = c+ b.

Thus, a? is odd as ¢ and b have different parities.

This gives us that a must be odd.

Claim 2. b is divisible by 4.

Proof. Plugging the value of ¢ from (2) into (1) gives us:

a?+ b2 =(1+0b)?

= W=0a"-1

— 2=(2k—1)2 -1 (as a is odd, a = 2k — 1 for some k € N)
e b= 2%k(k—1)

As k(k — 1) is even, b is divisible by 4.

From (2), we have that b= —1 mod c.

From (1), we have that a2 + 5> =0 mod c.

This means that b2 =1 = —a? mod c.

That is, a> = —1 mod c.

As b = 4n for some n € N, we have that a® = (¢2)?" = (-1)** =1 mod c.
This gives us that a® =1 mod c.

As ais odd and b = —1 mod ¢, we have that b* = —1 mod c.

Thus, we have that «” +5* =0 mod ¢, as desired.



The proof proceeds through a series of seven lemmas.

Lemma 1. Lines DP and EF are the internal and external angle bisectors of /BPC.

Proof. Since DEF the cevian triangle of ABC with respect to its Gregonne point, we have that
-1= (ﬁﬂE,D;B,C} .

Then since ZDPF = 90° we see P is on the Apollonian circle of BC through D). So the conclusion

follows. O

Lemma 2. Triangles BPF and CEP are similar.

Proof. Invoking the angle bisector theorem with the previous lemma gives
BP BP CP E
BF ~ BD CD CE’
But /BFP = /CEP, so ABFP ~ ACEP. O

Lemma 3. Quadrilateral BZY C is cyclic; in particular, line Y Z is the antiparallel of line BC' through
|£BAC' .

Proof. Remark that LY BZ = ZPBF = ZECP = £YCZ. O



Lemma 4. The circumcircles of triangles AYZ, AEF, ABC are concurrent at a point X such that
AXBF ~ AXCE.

Proof. Note that line E'F is the angle bisector of ZBPZ = ZCPY. Thus

ZF ZP YP YE
FB  PB PC EC
Then, if we let X be the Miquel point of quadrilateral ZY CB, it follows that the spiral similarity

mapping segment BZ to segment CY maps E to F'; therefore the circumecircle of AAEF must pass
through X too. O

Lemma 5. Ray X P hisects /FXFE.

Proof. The assertion amounts to

XF BF FP

XE EC  PE
The first equality follows from the spiral similarity ABFX ~ ACEX, while the second is from
ANBFP ~ ACEP. So the proof is complete by the converse of angle hisector theorem. O

Lemma 6. Points X, P, I are collinear.

Proof. On one hand, /FXI = /FAIl = %/_’A. On the other hand, /FXP = %KFXE = %LA. Hence,
X, Y, I collinear. O

Lemma 7. Points X, @), I are collinear.

Proof. On one hand, ZAX () = 90°, because we established earlier that line Y Z was antiparallel to
line BC' through £ A, hence AQ | BC means exactly that ZAZ(Q) = AY(Q = 90°. On the other hand,
ZAXT = 90° according to the fact that X lies on the circle with diameter AI. This completes the
proof of the lemma. H

Finally, combining the final two lemmas solves the problem.



9.

9. Here,z, 29, - - - 25 are the vertices of the regular polygon. Let

Zp =T+ Yy
1 1 1 1 1 1 1 1 .

Now , , , , , , , are also vertices of a regular

a1 —2t as—2t az3—2t a4 —2t as—2t ag—2t ar—32t asg — 2t
octagon, where a; e Rfor j =1, 2, ..., 8

1 a4 + 21
So PRy =x+ 1y or P =T+ Y.
This gives us the following:

- a4 y = 2
= 2 J )
aj + 4 aj + 4
2 2 ? 4 1 Y . .

Now, we get that: z* 4 y= = + = = =. So, we get that the vertices lie on a

(a2 4+4)2  (a3+4)2  (ai+4) 2
circle given by the equation,

1
The radius of the circle is —, and so we have the radius of the circle circumscribing our regular octagon.
From the radius, we can easily calculate the area of the octagon.

Area = ——

42

10. Let N = zyx525 - - 19 be one such number. Then, we have

10
Z T; = 45,
n=1

Hence, N is divisible by 9, so N is also divisible by 9- 11111 = 99999.
Now, N = z12223 - - - 25.10° + 2627 - - - T10

= I LTy - Tg" 99999 + T1&oly - Ty + Tgl7---T1p

Now, z1x2x373T475 < 99999

and also, xgxrrTgTox19 < 99999

S0, T1ToX3T3T4T5 + TeTrTyToT1g < 2 - 99999,

SO1 T1X2L3L3TaLs + TeLrTeToT1o = 99999,

SO1 1+ T =290+ T7 =3 +T3g =T4+T9g =I5+ T =9.

So, total number of such numbers is equal to (by solving the number of positive solutions under the condi-
tions of above mentioned equation)
=9.-8-6-4-2-1-1-1-1-1=3456.






