1.
Answer: |see below We first note that main diagonal (the squares with row number equal to

column number) is a permutation of 1,2,... ,n. This is because each number i (1 < i < n) appears
an even number of times off the main diagonal, so must appear an odd number of times on the main
diagonal. Thus, we may assume that the main diagonal’s values are 1,2.....n in that order. Call any
matrix satifsying this condition and the problem conditions good. Let g(n) denote the number of good
matrices. It now remains to show that g(n) = {:;{_nl]}!.

Now, consider a round-robin tournament with n teams, labeled from 1 through n, with the matches
spread over n days such that on day i, all teams except team i play exactly one match (so there are
“T_l pairings), and at the end of n days, each pair of teams has played exactly once. We consider two
such tournaments distinet if there is some pairing of teams 7, 7 which occurs on different days in the
tournaments. We claim that the tournaments are in bijection with the good matrices.

Proof of Claim: Given any good matrix A, we construct a tournament by making day k have matches
between team i and j for each i, j such that A; ; = k, besides (i, j) = (k, k). Every pair will play some
day. and since each column and row contains exactly one value of each number, no team will play
more than once a day. Furthermore, given two distinet good matrices, there exists a value (off the
main diagonal) on which they differ; this value corresponds to the same pair playing on different dates,
so the corresponding tournaments must be distinet. For the other direction. take any tournament.
Make a matrix A with the main diagonal as 1,2,...,n, and for each k, set A; ; = k for each i, j such
that teams i, 7 play each other on day k. This gives a good matrix. Similarly, given any two distinct
tournaments, there exists a team pair 7, § which play each other on different days; this corresponds to
a differing value on the corresponding good matrices.

(n—1)!
w(n)
the tournament as an unordered collection of sets of pairings, with the order implictly imposed by the
team not present in the set of pairings.) For our construction, consider a regular n-gon with center
0. Label the points as A1, A5, ..., A, as an arbitrary permutation (so there are n! possible labelings).
The team k will be represented by Ag. For each k, consider the line A; 0. The remaining n — 1 vertices
can be paired into “T_j groups which are perpendicular to this line; use these pairings for day k. Of
course, this doesn’t generate n! distinet tournaments— but how many does it make?

It now suffices to exhihit

distinet tournaments. (It may be helpful here to think of the days in

Consider any permutation of labels. Starting from an arbitrary point. let the points of the polygon
be Ar1y. Az2), ..., Az(n) in clockwise order. Letting w(0) = w(n) and w(n + 1) = 7(1), we note that
m(i — 1) and (i + 1) play each other on day w(i). We then see that any other permutation of labels
representing the same tournament must have A ; 1Ay = Ay Arsq) for all i Thus, if A 4, is
k vertices clockwise of A, then Ay (9 is k vertices clockwise of Ay(1), and so on all the way up
to Azn_1) being k vertices clockwise of A;,). This is only possible if k is relatively prime to n,so
there are ¢(n) choices of k. There are n choices of the place to put A (), giving ne(n) choices of
permutations meeting this condition. It is clear that each permutation meeting this condition provides
the same tournament, so the n! permutations can be partitioned into equivalence classes of size ng(n)
each. Thus, there are %ﬁn} distinect equivalence classes, and we are done.



2.

=, i.e. n has > 3 prime divisors: Let n = [[p;*. Note it suffices to only consider regular p;-gons.
Label the vertices of the n-gon 0,1,...,n — 1. Let S = {I“ 0<z<p —1}, andlet S; =S5+ "m for

0<j<p3—2.(S+a={s+a:seS5}.) Thenlet S,,_, —{;—?.Ugmgpg—l}—i—g%m.]?mall},
let §"={2:0 <z < p3—1}. Then I claim

pa—1

L] si|\s

i=0
is well-centered but not decomposable. Well-centered follows from the construction: I only added and
subtracted off regular polygons. To show that its decomposable, consider ﬁ. Clearly this is in the set,

but isn’t in S”. I claim that ﬁ isn’t in any more regular p;-gons. For i > 4, this means that = + ;% is
in some set. But this is a contradiction, as we can easily check that all points we added in are multiples

of p*, while i isn’t.

For i = 1, note tha.t 0 was removed by S’. For ¢ = 2, note that the only multiples of p3® that are in

some S; are 0, ™ R REEE uﬁ In particular, 2 L+ ;‘ isn’t in any S;. So it suffices to consider the case

i = 3, but it is easy to show that p—"l + % isn’t in any S;. So we're done.

<, i.e. n has < 2 prime divisors: This part seems to require knowledge of cyclotomic polynomials.
These will easily give a solution in the case n = p®. Now, instead turn to the case n = p®¢®. The next
lemma is the key ingredient to the solution.

Lemma: Every well-centered subpolygon can be gotten by adding in and subtracting off regular
polygons.

Note that this is weaker than the problem claim, as the problem claims that adding in polygons is
enough.

Proof. Tt is easy to verify that ¢,(z) = %I—_ll}{(m&)l Therefore, it suffices to check that there exist
TP 9 —

integer polynomials ¢(x), d(z) such that

" —1 " —1 B (z" — 1)(z7s — 1)
m%—l-c(:r)—’_fa%—l-d(w)_ (zv —1)(z7 - 1)

Rearranging means that we want

(55% —1)-c(ar)+(m% —1)-d($):m% — 1.

But now, since gcd(n/p n/q) = n/pq there exist positive integers s, such that % — %’“ = %. Now
choose c(z) = £ q = d(.ac) % to finish. 1
I TP —



Now we can finish combinatorially. Say we need subtraction, and at some point we subtract off a p-gon.
All the points in the p-gon must have been added at some point. If any of them was added from a
p-gon, we could just cancel both p-gons. If they all came from a g-gon, then the sum of those p g-gons
would be a pg-gon, which could have been instead written as the sum of ¢ p-gons. So we don’t need
subtraction either way. This completes the proof.

Solution I When n = 4, we consider the set
M= {m,m+1, m+2, s m+n—11}

If 2 | m, thenm-1, m-+2, m -3 are mutually prime;

If 2} m, thenm, m+1, m—+ 2 are mutually prime.

Therefore, in every n-element subset of M, there are at least 3
mutually prime elements. Hence there exists f(n) and

f(n) < n,

LetT,=1{t|t=n-+1and 2 |tor3| ¢}, then T, is a subset of
{2, 3, =+, n+1}, But any 3 elements in T,, are not mutually prime,
thus f(n) =| T, |+ 1.

By the inclusion and exclusion principle. we have

=[P R

Thus

n—l—‘]'_|_[n—|—‘l:|_ [n—|—1

> : : 1. 1)

Therefore

f4) =4, f(5) =5, f(6) =5,

S =6, f(B) =7, f(9) =8,

Now we prove that f(6) = 5.

Let oy s x5y a3 24+ x5 be 5 numbers in {m, m=+1, =, m+5}, If
among these 5 numbers there are 3 odds, then they are mutually
prime. If there are 2 odds among these 5 numbers, then the other
three numbers are even, say x;, x2, x3, and the 2 odds are x4, 5.



When 1<Ci<7j<C3, | x;—x; | € {2, 4}, Thus amongxy, xa, x3 there
is at most one which is divisible by 3, and at most one which is
divisible by 5. Therefore, there is at least one which is neither
divisible by 3 nor by 5, say, 3/x3: and 5fxs. Then a3, x4, x5 are
mutually prime. This is to say, among these 5 numbers there are 3
elements which are mutually prime, i.e. f(6) = 5,

On the other hand, {m, m=+1, s m+n} = {m, m+1, », m+
n—1} |J {m-+n} implies that

fla41) << f(n) +1.
Since f(6) = 5, we have

Thus when 4 <- n=_9,

- [FRELEE o

In the following we will prove that (2) holds for all n by
mathematical induction.

Suppose that equation (2) holds for all n=< % (£ ==9), In the case
whenn = k41, since

lmy m—41, =y m+kj = {my m—+1, =y m+k—06; U
im+k—5 m+k—4 m+k—3, m+k—2,m+k—1, m+k},
equation (2) holds forn = 6, n = k£ —5, we have
SCe+1) < f(k—5) + f(6) —1

LR o

By (1) and (3) we obtain that equation (2) holds forn = £+ 1,
Consequently, for any n = 4, we have

s = [ L




4.

Answer: We write all fractions of the form b/a, where a and b are relatively prime, and

0 < b < a < n, in ascending order. For instance, for n = 5, this is the sequence

This sequence is known as the Farey sequence.

Now, if we look at the the sequence of the denominators of the fractions, we see that k appears (k)
times when k > 1, although 1 appears twice. Thus, there are N + 1 elements in the Farey sequence.
Let the Farey sequence be

by by by +1
ay’as’? T a4
Now, ay11 = 1, so the sequence ai,as,...,ax contains (k) instances of k for every 1 < k < n. We

claim that this sequence also satisfies

Lo 11

]ao azas anal
Since a; = ayy1 = 1, we have
1 1 11 1 1
ajas + asasg + + ayay  ajas + asas + + anany1’
o b; _ . .
Now, it will suffice to show that a,-a,l-+1 = a—_: — %. Once we have shown this, the above sum will
telescope to 2241 b1 1 _ =1,
an 41 ai

b; : . :

To see why 1 2t b holds, we note that this is equivalent to 1 = b;11a; — bja;41. We

Ridif1 @ifl g
can prove this fact geometrically: consider the triangle in the plane with vertices (0,0), (a;, b;), and

(@it1,bir1). This triangle contains these three boundary points, but it contains no other boundary or
interior points since a; and a;41 are relatively prime to b; and b;11, respectively, and since no other

fraction with denominator at most n lies between %L and 2—‘1’—11 Thus, by Pick’s theorem, this triangle

has area 1/2. But the area of the triangle can also be computed as the cross product %[:bi.'.]_a{ —biaii1):
hence b;11a; — bja;+1 = 1 and we are done.



Denote the sum from the statement by S,. We will prove a stronger inequality,
namely,

(lo yn —4).

The solution is based on the following obvious fact: no odd number but 1 divides 2"
evenly. Hence the residue of 2" modulo such an odd number is nonzero. From here we
deduce that the residue of 2" modulo a number of the form 2" (2k + 1), k > 1, 1s at least
2", Indeed, if 2" = 2k+1)g+r,with1 <r < 2k+1,then2" =2"2k+1)qg+2"r,
with 2" < 2"r < 2™(2k + 1). And so 2" r is the remainder obtained by dividing 2" by
22k +1).

Therefore, S, > 1 x(the number of integers of the form 2k 4+ 1, k > [, not exceeding
n)+2 x(the number of integers of the form 2(2k + 1), k > 1, not exceeding n)—i—22><( the
number of integers of the form 222k + 1),k > 1, not exceeding n)+ - - -

Let us look at the (;j + 1)st term in this estimate. This term is equal to 2j multiplied
by the number of odd numbers between 3 and s-, and the latter is at 16‘18'[ —3). We
deduce that

‘)J”

n—3-27 | ‘
11_22J 2J+] —ZE(H—:%-ZJ),

J
where the sums stop when 2/ - 3 > n. that is, when j = |log, %J. Setting / = |log, %j,
we have
l
n 3 : n 3.2
Sn >0+ 1) —— 2! [+ 1)= —
>+ 13 2; >+ 15— —

Recalling the definition of /, we conclude that

S n l n n (l n 2) (l 4)
n> —log,——n=—\log, - — —og,n —4a),
2 23 23 =2

and the claim is proved. The inequality from the statement follows from the fact that for
n > 1000, $(log, n —4) > 1(log, 1000 — 4) > 2.



The number of subsets with the sum of the elements equal to n is the coefficient of
x" 1n the product

Gx)=(14+)(14+x3-- (1 4+ xP).

We are asked to compute the sum of the coefficients of x” for n divisible by p. Call this
number s(p). There is no nice way of expanding the generating function; instead we
compute s(p) using particular values of . It is natural to try pth roots of unity.

The first observation is that if & is a pth root of unity, then )_;_, &7 is zero except
when £ = 1. Thus if we sum the values of G at the pth roots of unity, only those terms
with exponent divisible by p will survive. To be precise, if & i1s a pth root of unity
different from 1, then

P
Y GEY) = psp).

k=1

We are left with the problem of computing GER, k=1,2,....p. Fork = p, thisis
qust2?. Fork=1.,2,..., p— 1,

P P P
GEH =[Ja+&9) =]Ja+&eHh =D (=D =€) = (=D (=D = 1)
j=1 j=l

j=1

= 2.

We therefore have ps(p) =27 +2(p — 1) = 27 4 2p — 2. The answer to the problem
iIss(p) = Lp—il + 2. The expression is an integer because of Fermat’s little theorem.



7.

Answer: Maximum: 9, minimum: -10, number of terms: 346.

Calculating the first few values, we find: (n is in binary)

n iy
1 0
10 -1
11 1
100 0
101 | -2
110 0
111 2

1000 | 1

1001 | -1

1010 | -3

1011 | -1

1100 | 1

1101 | -1

1110 | 1

1111 | 3

If the last two digits are 00 or 11, then a,, is one more than a.;, If the last two digits are 01 or 10, then
a, is one less than a.;,. Note that [§] is formed by deleting the last binary digit of n. So a,, =(number of
adjacent pairs 00 and 11) - (number of adjacent pairs 01 and 10). For example, 1100 has pairs 11, 10 and
00580(112:2—1:1.

1996 = 11111001100, so the maximum value of a,, for n 1996 is at n = 1111111111 = 1023 with value
9. Similarly, the minimum value is at n = 10101010101 with value -10.

If a, = 0, then n must have an odd number of binary digits, with the first digit 1. The only 1 digit
number is n = 1. The 3 digit numbers (with a,, = 0) are 110 and 100. The 5 digit numbers are 11101, 11001,
11011, 10111, 10001 and 10011. Consider the 2m + 1 digit numbers. Exactly m of the digits after the initial
1 must be such that they are the same as the previous digit. Specifying those digits completely determines
the number, so there are (*”) such numbers (where () is the binomial coefficient). Thus there are (3)
7-digit numbers, [i) 9-digit numbers and (lf) 11-digit numbers. But the 11-digit numbers 11111100000,
11111010100, 11111010110, 11111010010, 11111011010 are greater than 1996. Hence the required number is
14+24+64+ 204 70+ 252-5 = 346.



